中文名称: 硝酸镧
中文别名: 硝酸镧;六水合硝酸镧;硝酸镧,水合;硝酸镧六水(>99%,BR);硝酸镧(III)水合物, 99%,含水大约22-25%;硝酸镧(III) 五水合物;硝酸镧(III)水合物;硝酸镧水合物
英文名称: lanthanum nitrate hydrate
英文别名: LANTHANUM NITRATE, N-HYDRATE;LANTHANUM NITRATE HYDRATE;LANTHANUM NITRATE HYDRATED;lanthanum(iii) nitrate hydrate;Lanthanum Nitrate Hydrate 99.99%;LanthanuM(III) nitrate hydrate, 99%, water ca 22-25%;LanthanuM(Ⅲ) nitrate hydrate;LANTHANUM NITRATE HYDRATE, 99.9%
cas号: 100587-94-8
EINECS号: 683-072-1
分子式: H2LaN3O10
分子量: 342.94
InChI: InChI=1/La.HNO3.H2O/c;2-1(3)4;/h;(H,2,3,4);1H2
分子结构:
密度: -
熔点: -40°C
沸点: 126°C
闪点: -
折射率: -
蒸汽压: -
物化性质: -
产品用途:
由氧化镧或氢氧化镧溶于稀硝酸溶液,经水浴蒸发后结晶而得。用于制防腐剂、制荧光粉、光学玻璃和煤气灯罩、化学试剂。
【硝酸镧在植物方面的应用】
(1)研究发现,接种OM 真菌同时添加硝酸镧提高了细胞内多糖和蛋白质含量,促进了铁皮石斛中物质的积累,这是石斛植株生物量增加的另一个因素。植物的抗逆性与防御系统活性密切相关,硝酸镧和OM 真菌能提高细胞生理活性,细胞代谢旺盛,而它们的联合使用效果更显著。有氧呼吸产生了大量的活性氧,加速了氧化胁迫。植物体内存在SOD、CAT和POD等活性氧清除酶系统,这些酶协同作用使活性氧产生和清除处于平衡状态,以维持植物的正常生理代谢。同时,POD是多功能酶,对植物生长还具有调节作用。MDA是细胞膜脂过氧化的主要产物之一,其含量高低可以反映植物遭受逆境伤害程度。大量活性氧的产生加速了氧化胁迫,促进了细胞膜脂过氧化反应,产生大量MDA。MDA的积累与保护酶的活性有一定的相关性,保护酶活性的提高有利于降低MDA的含量。适量的硝酸镧和OM 真菌均能提高细胞内保护酶的活性,降低MDA的含量,二者的变化呈现一定的相关性;在同一硝酸镧水平下,接种OM 真菌的植株细胞内的SOD、CAT和POD活性均高于未接种处理,可见,接种OM 真菌再添加适量的硝酸镧效果更佳。适量的硝酸镧和OM 真菌的联合使用能有效防止植株衰老,提高植株的抗逆性和适应性,促进铁皮石斛的生长。
总之,添加适量的硝酸镧和接种OM 真菌能明显改善铁皮石斛生理特性,适量的硝酸镧能促进铁皮石斛菌根的形成,进而提高铁皮石斛的叶绿素含量、可溶性蛋白质含量以及保护酶活性,降低MDA含量,增强了铁皮石斛对环境的适应能力,提高铁皮石斛生物量和多糖等活性成分的积累。为今后进一步开展石斛菌根化栽培和稀土菌肥的开发提供了理论依据。
(2) 生物量是植物对碱胁迫响应的综合体现。关于硝酸镧对碱胁迫下黑麦草幼苗生长和光合生理的影响的研究结果表明[5], NaHCO3 胁迫明显抑制黑麦草幼苗的生长, 低浓度硝酸镧可以缓解碱胁迫对幼苗生长的抑制作用, 这可能与La3 +能够将胁迫信号转导至胞内进而提高钙调素水平。 加速细胞分裂或改变细胞膜脂肪酸配比, 增加膜的流动性及改善光合功能有密切关系。叶绿体是植物光合作用的部位, 也是细胞中对盐敏感的细胞器。植物的光合效率与叶绿体中光合色素的含量、电子传递和磷酸化活性密切相关, 光合电子传递和磷酸化活性降低, 则碳素同化受到限制。研究结果显示, 低浓度硝酸镧可以缓解碱胁迫下黑麦草叶片叶绿素和类胡萝卜素含量的下降, 从而维持较高的光合速率, 高浓度硝酸镧却导致碱胁迫下光合色素的含量和光合速率下降。硝酸镧引起光合色素含量变化的原因可能是低浓度La3 +激活了叶绿素合成中的某些酶类或直接参与形成了稀土叶绿素[ 19] , 而高浓度La3 +可能抑制叶绿素合成过程中相关酶的活性或激活叶绿素酶加速其分解所致, 但具体机理有待进一步
研究。诸多研究表明, 适宜浓度的镧对植物光合电子传递和磷酸化具有促进效应, 如硝酸镧能够提高小麦叶片的希尔反应活性[ 6] ;加快烟草光合电子传递与磷酸化反应[ 7] ;LaCl3 能激活菠菜叶绿体偶联因子的活性, 提高循环和非循环光合磷酸化水平。外施一定浓度的硝酸镧可有效降低碱胁迫造成的光合色素含量、光合电子传递速率及光合磷酸化和RuBPCase活性的下降, 从而缓解碱胁迫对黑麦草叶片光合速率和幼苗生长的抑制。
(3)研究表明[6]适宜浓度的硝酸镧处理能极大地提高甜瓜叶片的叶绿素含量, 尤其在伸蔓期和始花期的提高幅度更为明显, 从而大大提高了光合效率, 促进了植物的生长和发育进程。而高浓度的硝酸镧处理使甜瓜叶片的叶绿素和类胡萝卜素含量在膨瓜期均低于对照, 表明高浓度的硝酸镧处理在生长后期已对甜瓜叶片光合色素产生了抑制作用。类胡萝卜素在叶绿体中合成积累,能猝灭三线态叶绿素, 清除单线态氧, 保护叶绿素 。类胡萝卜素含量下降, 可能是由于高浓度的硝酸镧已伤害到光合组织, 使过剩的光能生成大量单线态氧, 导致类胡萝卜素被消耗, 进一步加剧了对叶绿素的伤害。
(4) 在基本培养基中添加20 mg•L - 1 的La( NO3)3,0. 2 mg•L - 1 的IAA 和0. 2 mg•L - 1 的IBA 时,长柄扁桃的生根培养效果最好。在该条件下根的诱导频率、根长和根数都比其他处理组有显著的提高。2. La( NO3)3对长柄扁桃试管苗根诱导频率和每植株根平均个数的影响大于IBA 和IAA。3. 在添加20 mg•L - 1硝酸镧培养基中,长柄扁桃根细胞活力最高,为对照的2. 49 倍。但是,随着硝酸镧剂量的增加,根细胞活力没有显著的变化。4. 基本培养基中添加20 mg•L - 1的La(NO3)3,0. 2 mg•L - 1的IAA 和0. 2 mg•L - 1 的IBA 的长柄扁桃试管苗移栽驯化2 个月后的移栽成活率达到94%,株高是对照的1. 53 倍。
【硝酸镧在化工方面的应用】
(1)硝酸镧添加有助降低钙镁锌三金属氧化物催化体系的最适用量和最适催化温度,然而这种促进作用会随着硝酸镧比例的上升而下降,硝酸镧添加对最适反应时间并无明显作用。反应时间和反应温度的下降说明硝酸镧添加有利于降低生物柴油制备过程成本,更利于实现工业化应用。改性催化剂具有较丰富的孔隙结构,有利于其进行酯交换反应,这在一定程度上解释了其良好的催化效果[8]。
(2)研究员[9]采用缓慢升温法燃烧灰化煤炭样品,用硝酸- 高氯酸- 氢氟酸消化分解,以硝酸镧为基体改进剂,GFAAS 法测定高背景低含量的煤中铍,具有检出限低、线性范围宽、精密度和准确度高的优点。镧与干扰元素结合生成了热稳定的难熔、难蒸发、难解离的化合物,将铍释放出来,镧起到了既提高灰化温度,又相对降低原子化温度的双重作用,延长了石墨管的使用寿命。该方法操作简单,无需对石墨管预处理,具有很强的稳定性和适应性,不仅适用于煤中铍的测定,可推广应用到其他基质中铍的测定。在探讨基体中共存元素的干扰作用时发现: Al、Ca、Mg、Na、Ti、Ba、Cu、Cr、Pb、Mo 及各元素的混合物为正干扰,Fe、P、Mn、V、Ni 为负干扰,而将共存元素混合后,混合物与Al 的正干扰效果几乎一致,这有可能是其他元素的正干扰和负干扰相互抵消、相互作用的结果,也有可能相互之间生成了难熔难解离的络合物,其作用机理有待今后进一步研究。
(3) 实验结果表明[10], 硝酸镧结晶水合物合成环己酮乙二醇缩酮具有较好的催化活性, 最佳反应条件:环己酮0 .3 mol , n(环己酮)∶n (乙二醇)=1∶1.5 , 带水剂甲苯30 mL , 回流反应时间2.0 h , 催化剂用量0.25 g , 催化剂重复使用性能良好。
危险品标志:
风险术语: -
安全术语: 远离易燃材料、如果接触眼睛,请立即用大量清水冲洗喝水并寻求医疗建议、穿戴合适的防护服